Which team will sign Lebron in 2018-2019?

The prediction that Lebron James will leave Cleveland in search of a better chance to win championships is not a novel idea. So where will he go? Here are the most likely scenarios:

1. Golden State Warriors. I’m sure the idea of Lebron joining the Warriors something a lot of people don’t want. Lebron wants to win, and joining the Warriors would ensure that. To make it work, the Warriors would have to clear cap space, as Lebron’s salary for 2018-2019 was on the books for $35 mil. I’ve seen articles that suggest Klay Thompson would get traded, but I don’t think so. Trading Draymond and Iguodala, at $17.5 and $16 mil, is close enough to Lebron’s salary, and is the most likely scenario.

2. Portland Trail Blazers. Lebron to the Blazers is a bit more complicated in terms of moving enough $ out of Portand to make it work. If the Trail Blazers can move Evan Turner ($17 mil), Meyers Leonard ($10 mil), and Al-Farouq Aminu ($7 mil), they will have moved enough salary to sign Lebron.

3. Philadelphia 76ers. For this to happen, the 76ers would have to let J.J. Redick and his $23 mil salary leave. Redick has been a valuable contributor to the Sixers success in 2017-18, and losing/replacing his production (i.e. Belinelli, Fultz) won’t be easy. But the combo of Embiid, Simmons, and Lebron would essentially guarantee more Finals appearances for Lebron, as that trio would be tough to beat in the East.

4.Houston Rockets. If the Rockets can move Ryan Anderson ($20mil) and P.J. Tucker ($8 mil) salary without taking any salary back, and if Chris Paul and Lebron are willing to take ~$30 mil, instead of $35 mil each, then this can work. However, trading Anderson and not taking any salary back is unlikely.

Based on the relative ease of being able to move Draymond and Iguodala, I think Lebron is a lock to join the Warriors next year. Let’s see if I’m right!

Reducing Homocysteine? Updates.

In an earlier post I wrote about the association between elevated circulating levels of homocysteine with an increased risk of death from all causes (https://michaellustgarten.com/2017/11/22/homocysteine-and-all-cause-mortality-risk/). I started posted updates in that link, but I’ve decided to move them to this post. Plus, there’s new data (3/20/2018 measurement)!
hcy.png

12/5/2017: Despite 42 days of 800 micrograms of supplemental folic acid, bringing my average daily folate intake to 2026 micrograms/day, my plasma homocysteine was essentially unchanged at 11.7 uMoL, when compared with my baseline value of 11.8 uMol.What’s next on the list to reduce it? Trimethylglycine, also known as betaine. I’m a proponent of using diet as a first strategy,  and to increase my dietary betaine levels, I’ll eat beets and quinoa, bringing my daily betaine levels to ~500 mg/day. Let’s see how it turns out on my next blood test!

1/2/2018: ~500 mg/day of betaine from beets and quinoa did absolutely nothing to my homecysteine levels. In fact, it got worse (15.3 uMoL)! To test the hypothesis that it wasn’t enough betaine, next I tried 4 grams/day of betaine (also known as trimethylglycine, TMG).

2/20/18: Supplemental TMG did absolutely nothing in terms of reducing my homocysteine to values below baseline! Also note that there is evidence that TMG increases blood lipids, including LDL and triglycerides (TG; Olthof et al. 2005), and that’s exactly what it did to me. My average LDL and TG values since 2015 (11 measurements) are 77 and 50 mg/dL, respectively. On TMG, these values increased to 92 and 72 mg/dL, respectively, making them my highest values over 11 individual blood tests (with the exception of 1 day with an LDL of 93 mg/dL). Next, I tried a stack that included 50 mg of B6, 1000 mcg of B12, and 400 mcg of methylfolate, as supplementation with these B-vitamins has been shown to lower homocystine (Lewerin et al. 2003).

3/20/18: Finally, some progress! My homocysteine levels were finally reduced during the B-vitamin supplementation period. I’ve written it like that because I’m not sure if it was the B-vitamins that caused it. For example, in the image below, we see the correlation between my dietary B6 intake with homocysteine. The trendline is down, which I would expect if B6 supplementation actually is playing a role in reducing my homocysteine levels. However, note that the correlation between my dietary B6 levels with homocysteine is not very strong (= .48), resulting in a moderate R2 of 0.23 (similar data was obtained for B12 and folate). With 5 blood test measurements corresponding to 5 dietary periods, if B6 is playing a role, I would expect a stronger correlation. Nonetheless, with more data, the correlation may strengthen, so stay tuned for that!

b6hcy.png

If you’re interested, please have a look at my book:

 

References

Lewerin C, Nilsson-Ehle H, Matousek M, Lindstedt G, Steen B. Reduction of plasma homocysteine and serum methylmalonate concentrations in apparently healthy elderly subjects after treatment with folic acid, vitamin B12 and vitamin B6: a randomised trial.vEur J Clin Nutr. 2003 Nov;57(11):1426-36.

Olthof MR, van Vliet T, Verhoef P, Zock PL, Katan MB. Effect of homocysteine-lowering nutrients on blood lipids: results from four randomised, placebo-controlled studies in healthy humans. PLoS Med. 2005 May;2(5):e135.