100 Days Of Dietary Data

I’ve posted individual dietary days as an example of what and how much I eat (https://michaellustgarten.com/2015/12/31/130-grams-of-fiber-2400-calories/). However, a few days of examples may not represent the whole dietary picture. To address this, below is my average nutrient intake for the past 100 days (from October 24, 2018-Feb 5 2019):

100 days of nutrition.png

Notice that my average values for many of these variables (i.e. potassium, selenium, Vitamin C, Vitamin K, etc.) are way above the RDA. For more info on that, I have several blog posts that explain the “why” behind that. Where am I getting those nutrients from? Shown below are 100-day averages for my food intake, ranked in order from most consumed (in grams, or ounces, if it’s a drink) to least:

100 days of foods.png

During the past 100 days, my top 5 foods in terms of daily intake include carrots, strawberries, red peppers, watermelon, and cauliflower. Scroll through the list to see how much I average on a daily basis for each food!

 

Have a look at my book, if you’re interested!

Resting heart rate: What’s optimal?

One of the goals of my exercise program is to reduce my resting heart rate (RHR). A stronger heart beats less times per minute, but pumps more blood per beat. In contrast, a weaker heart beats more times per minute, but less blood per beat.

Is there an optimal level for RHR? Based on a meta-analysis of 59 studies that included 1,810,695 subjects, RHR values < 50 beats per minute (bpm) are associated with maximally reduced risk of death from all causes. Conversely, RHR values > 50 bpm are associated with a higher mortality risk (Aune et al. 2017):

Screen Shot 2019-02-02 at 10.48.29 AM

What’s my resting heart rate? Shown below is that data, tracked by WHOOP since August. Note that my RHR wasn’t significantly different from August until October, ranging from 51-53 bpm (average, 51.7). However, because I was tracking my RHR, I noticed that I was overtraining, leading to very high HRs, lower heart rate variability, and less deep sleep (topics for another post!) the day(s) after exercise. So early in November, I changed my exercise routine. As a result, from November until the end of January, my average RHR (49.7 bpm) has been significantly less (p-value =1E-10), and based on January’s average RHR, I’m trending closer to 47 bpm! Also note that * = significantly different when compared with August.

hr

What did I change in my exercise program? Since I’ve been in Boston (~9 years), I’ve walked 15-20 miles per week: it’s 1.1 miles to and from work, plus at least an hour of walking on Saturdays and Sundays. That’s a constant that hasn’t changed. In contrast, I split my 3-day weight training routine, which totaled ~5-6 hours/week into 3-5 days at less than an hour each session, and at a lower intensity with more reps. My strength is still as good as it was before, and as a result, my recovery HRs aren’t as high, thereby leading to a lower average RHR over time,. I’ve been training like that consistently for the past 30 years, but it took wearing a fitness tracker to change it!

 

Reference

Aune D, Sen A, ó’Hartaigh B, Janszky I, Romundstad PR, Tonstad S, Vatten LJ. Resting heart rate and the risk of cardiovascular diseasetotal cancer, and all-cause mortality – A systematic review and dose-response meta-analysis of prospective studiesNutr Metab Cardiovasc Dis. 2017 Jun;27(6):504-517.

 

If you’re interested in living longer and healthier, please have a look at my book!