Tag Archives: carotenoids

Quantifying Biological Age: Blood Test #4 in 2021

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Levine’s Biological age calculator is embedded as an Excel file in this link: https://michaellustgarten.wordpress.com/2019/09/09/quantifying-biological-age/

DNA methylation GrimAge strongly predicts lifespan and healthspan


Fisetin is a senotherapeutic that extends health and lifespan https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/

Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration


NAD and the aging process: Role in life, death and everything in between https://pubmed.ncbi.nlm.nih.gov/27825999/

Carotenoids Are Associated With A Younger Epigenetic Age And Reduced All-Cause Mortality Risk

Papers referenced in the video: DNA methylation

GrimAge strongly predicts lifespan and healthspan:


GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality:


Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies: https://pubmed.ncbi.nlm.nih.gov/30475…

Albumin is included as a biological age predictor:





Age-related change data for albumin:


Associations of cardiovascular biomarkers and plasma albumin with exceptional survival to the highest ages: https://www.nature.com/articles/s4146…

Epigenetic Aging: Can It Be Slowed With Diet?

Having a faster rate of epigenetic aging, as measured by the epigenetic age metric, AgeAccelGrim, is associated with a significantly increased risk of death for all causes in a variety of cohorts, including the Framingham Heart Study (FHS), the Women’s Health Initiative (WHI) study, the InChianti study, the Jackson Heart Study (JHS), and collectively, when evaluated as a meta-analysis (Lu et al. 2019):

Screen Shot 2019-12-07 at 2.23.27 PM.png

With the goal of minimizing disease risk and maximizing longevity, can epigenetic aging be slowed? Shown below is the correlation between dietary components with AgeAccelGrim. Dietary factors that were significantly associated  (the column labelled, “p”) with a younger epigenetic age were carbohydrate intake, dairy, whole grains, fruit, and vegetables. In contrast, dietary fat intake and red meat were associated with older epigenetic ages (Lu et al. 2019):

Screen Shot 2019-12-07 at 2.34.50 PM.png

Note that dietary recall data as a means for identifying nutrient intake can be unreliable-a better measure of dietary intake is circulating biomarkers. Are there associations between circulating biomarkers of nutrient intake with epigenetic aging?

Higher blood levels of carotenoids, including lycopene, alpha- and beta-carotene, lutein+zeaxanthin, and beta-cryptoxanthin were associated with a younger epigenetic age (Lu et al. 2019):

epi veg

If your goal is optimal health and longevity, eating foods that are rich in these nutrients may be an important strategy for slowing epigenetic aging. Which foods contain these nutrients? Carotenoids are found almost exclusively in vegetables and fruits. For example, lycopene is enriched in watermelon and tomatoes, alpha- and beta-carotene is high in carrots, orange vegetables (sweet potato, squash, pumpkin) and greens, lutein+zeaxanthin is prevalent in greens, and beta-cryptoxanthin’s highest levels are found in butternut squash and red bell peppers.

If you’re interested, please have a look at my book!


Nutrient composition data: https://reedir.arsnet.usda.gov/codesearchwebapp/(S(ujsr52ygvp0tw13m1luk0rny))/CodeSearch.aspx

Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019 Jan 21;11(2):303-327. doi: 10.18632/aging.101684.