Tag Archives: Triglycerides

Blood Test Analysis: Italian Centenarians

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Papers referenced in the video: Laboratory parameters in centenarians of Italian ancestry https://pubmed.ncbi.nlm.nih.gov/17681733/

Risk Factors For Hyperuricemia In Chinese Centenarians And Near-Centenarians https://pubmed.ncbi.nlm.nih.gov/31908434/

Fasting glucose level and all-cause or cause-specific mortality in Korean adults: a nationwide cohort study https://pubmed.ncbi.nlm.nih.gov/32623847/

High-density lipoprotein cholesterol and all-cause mortality by sex and age: a prospective cohort study among 15.8 million adults https://pubmed.ncbi.nlm.nih.gov/33313654/

Predicting Age by Mining Electronic Medical Records with Deep Learning Characterizes Differences between Chronological and Physiological Age https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716867/

11 Centenarian TG studies: https://michaellustgarten.com/2020/02/19/blood-testing-whats-an-optimal-value-for-triglycerides-2/

Association of Hemoglobin Concentration and Its Change With Cardiovascular and All-Cause Mortality https://pubmed.ncbi.nlm.nih.gov/29378732/

U-shaped mortality curve associated with platelet count among older people: a community-based cohort study https://pubmed.ncbi.nlm.nih.gov/26265696/

Blood counts in adult and elderly individuals: defining the norms over eight decades of life https://pubmed.ncbi.nlm.nih.gov/32030733/

Effect of aging on serum uric acid levels: longitudinal changes in a large Japanese population group https://pubmed.ncbi.nlm.nih.gov/12242321/

Commonly used clinical chemistry tests as mortality predictors: Results from two large cohort studies https://pubmed.ncbi.nlm.nih.gov/33152050/

Implication of liver enzymes on incident cardiovascular diseases and mortality: A nationwide population-based cohort study https://pubmed.ncbi.nlm.nih.gov/29491346/

Association of the Aspartate Aminotransferase to Alanine Aminotransferase Ratio with BNP Level and Cardiovascular Mortality in the General Population: The Yamagata Study 10-Year Follow-Up https://pubmed.ncbi.nlm.nih.gov/27872510/

White blood cell count and mortality in the Baltimore Longitudinal Study of Aging https://pubmed.ncbi.nlm.nih.gov/17481443/

Age and sex variation in serum albumin concentration: an observational study https://pubmed.ncbi.nlm.nih.gov/26071488/

The gamma gap predicts 4-year all-cause mortality among nonagenarians and centenarians https://pubmed.ncbi.nlm.nih.gov/29348636/

Age-related changes in clinical parameters and their associations with common complex diseases https://pubmed.ncbi.nlm.nih.gov/26623014/

Centenarian Blood Test Analysis (n=1,754)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Papers referenced in the video:

Risk Factors For Hyperuricemia In Chinese Centenarians And Near-Centenarians https://pubmed.ncbi.nlm.nih.gov/31908434/

Association between fasting glucose and all-cause mortality according to sex and age: a prospective cohort study https://pubmed.ncbi.nlm.nih.gov/28811570/

Predicting age by mining electronic medical records with deep learning characterizes differences between chronological and physiological age https://pubmed.ncbi.nlm.nih.gov/29113935/

Age and sex variation in serum albumin concentration: an observational study https://pubmed.ncbi.nlm.nih.gov/26071488/

Commonly used clinical chemistry tests as mortality predictors: Results from two large cohort studies https://pubmed.ncbi.nlm.nih.gov/33152050/

The gamma gap predicts 4-year all-cause mortality among nonagenarians and centenarians https://pubmed.ncbi.nlm.nih.gov/29348636/

Triglyceride centenarian studies are referenced in this post from my website: https://michaellustgarten.com/2020/02/19/blood-testing-whats-an-optimal-value-for-triglycerides-2/

Effects of blood triglycerides on cardiovascular and all-cause mortality: a systematic review and meta-analysis of 61 prospective studies https://pubmed.ncbi.nlm.nih.gov/24164719/

High-density lipoprotein cholesterol and all-cause mortality by sex and age: a prospective cohort study among 15.8 million adults https://pubmed.ncbi.nlm.nih.gov/33313654/

Blood Testing: What’s Optimal For Triglycerides?

In terms of all-cause mortality risk, is the reference range for circulating triglycerides (TG, <150 mg/dL) optimal?

A meta-analysis of 38 studies in 360,556 subjects with a median age of 48y and a 12-year follow-up reported lowest all-cause mortality risk for subjects with TG values less than 90 mg/dL (equivalent to ~1 mmol; Liu et al. 2013). As shown below, each successive 90 mg/dL increase was associated with a 12% higher all-cause mortality risk. A person with a value closer to the high end of the reference range, ~150 would have a ~7% increased mortality risk compared someone with a value ~90. In other words, there would be 7 more deaths per 100 total people at a TG value of 150, compared with the death rate for people with values less than 90.

tg mortal

Added importance for the association between TG values less than 90 with all-cause mortality risk come from studies of people who have lived longer than 100 years, centenarians. As shown below, triglyceride values less than 101 mg/dL have been reported in 9 of 11 centenarian studies:

tg mort

What’s my TG value? As shown below, I’ve measured triglycerides 23 times since 2015, with an average value of 52 mg/dL:tg 2020

With the goal of keeping triglyceride levels low, are there dietary factors that influence it? When compared with my dietary data, the strongest correlation (r = 0.73, R2=0.5339) is present for triglycerides with my calorie intake. In other words, a higher daily calorie intake is associated with higher levels of triglycerides:

tg vs cals 2020

Based on this correlation, should my triglycerides start to rise in the future, a first step would be reducing my average daily calorie intake, which since October 2019 has been ~2550 calories/day.

 

If you’re interested, please have a look at my book!

References

Liu J, Zeng FF, Liu ZM, Zhang CX, Ling WH, Chen YM. Effects of blood triglycerides on cardiovascular and all-cause mortality: a systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis. 2013 Oct 29;12:159.

Epigenetic Aging: Inflammation, Exercise, Smoking

Besides diet (https://michaellustgarten.wordpress.com/2019/12/07/slowing-epigenetic-aging-with-diet/), are there other factors that may impact epigenetic aging? First, let’s have a look at clinically relevant variables, including inflammation, the lipid profile, kidney function, blood pressure, and body size/dimensions (Liu et al. 2019):

EA crp.png

One of the strongest correlations for the clinical variables with epigenetic aging (AgeAccelGrim) is found for C-reactive protein (CRP), with higher CRP being associated with an older epigenetic age. This data supports the hypothesis that CRP levels as low as possible may be representative of biological youth, which I’ve previously written about (https://michaellustgarten.wordpress.com/2019/10/19/optimizing-biological-age-crp/). Similarly, higher values for insulin, glucose, triglycerides, systolic blood pressure, BMI, and the waist/hip ratio were correlated with an older epigenetic age, whereas higher HDL was correlated with a younger epigenetic age. Significant correlations were not identified for total or LDL cholesterol, creatinine, or diastolic blood pressure.

Investigating further, the strongest correlation for epigenetic aging was found for smoking, as current smokers had an older epigenetic age. In contrast, those who exercised, drank alcohol, and that had higher levels of education and income had younger epigenetic ages (Liu et al. 2019):

exerc ea

 

References

Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, Whitsel EA, Assimes TL, Ferrucci L, Horvath S. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019 Jan 21;11(2):303-327. doi: 10.18632/aging.101684.

If you’re interested, please have a look at my book!

Michael Lustgarten on Calorie Restricting, Nutrient Tracking, and Blood Testing

Video of my presentation starts at 14:28, and lasts until 1:29:00+!

If you’re interested, please have a look at my book!

Blood Testing: What’s An Optimal Value For Triglycerides?

In terms of all-cause mortality risk, is the reference range for circulating triglycerides (TG, <150 mg/dL) optimal?

A meta-analysis of 38 studies in 360,556 subjects with a median age of 48y and a 12-year follow-up reported lowest all-cause mortality risk for subjects with TG values less than 90 mg/dL (equivalent to ~1 mmol; Liu et al. (2013)). As shown below, each successive 90 mg/dL increase was associated with a 12% higher all-cause mortality risk. A person with a value closer to the high end of the reference range, ~150 would have a ~7% increased mortality risk compared someone with a value ~90. In other words, there would be 7 more deaths per 100 total people at a TG value of 150, compared with the death rate for people with values less than 90.

tg mortal

Added importance for the association between TG values less than 90 with all-cause mortality risk come from studies of people who have lived longer than 100 years, centenarians. As shown below, triglyceride values less than 101 mg/dL have been reported in 9 of 11 centenarian studies:

tg mort

What’s my TG value? On my latest blood test (8/2015), it was 42. I’ve measured my TGs 11 times over the past 10 years-my average value for those measurements is 62. Based on the meta-analysis and centenarian data, that would put me in the lowest risk category for all-cause mortality.

tg mort

If you’re interested, please have a look at my book!

References

Arai Y, Hirose N, Yamamura K, Shimizu K, Takayama M, Ebihara Y, Osono Y. Serum insulin-like growth factor-1 in centenarians: implications of IGF-1 as a rapid turnover protein. J Gerontol A Biol Sci Med Sci. 2001 Feb;56(2):M79-82.

Baranowska B, Bik W, Baranowska-Bik A, Wolinska-Witort E, Szybinska A, Martynska L, Chmielowska M. Neuroendocrine control of metabolic homeostasis in Polish centenarians. J Physiol Pharmacol. 2006 Nov;57 Suppl 6:55-61.

Barbagallo CM, Averna MR, Frada G, Noto D, Cavera G, Notarbartolo A. Lipoprotein profile and high-density lipoproteins: subfractions distribution in centenarians. Gerontology 1998;44(2):106–10.

Bik W, Baranowska-Bik A, Wolinska-Witort E, Kalisz M, Broczek K, Mossakowska M, Baranowska B. Assessment of adiponectin and its isoforms in Polish centenarians. Exp Gerontol. 2013 Apr;48(4):401-7.

Chan YC, Suzuki M, Yamamoto S. Dietary, anthropometric, hematological and biochemical assessment of the nutritional status of centenarians and elderly people in Okinawa, Japan. J Am Coll Nutr. 1997 Jun;16(3):229-35.

Chan YC, Suzuki M, Yamamoto S. A comparison of anthropometry, biochemical variables and plasma amino acids among centenarians, elderly and young subjects. J Am Coll Nutr. 1999 Aug;18(4):358-65.

Liu J, Zeng FF, Liu ZM, Zhang CX, Ling WH, Chen YM. Effects of blood triglycerides on cardiovascular and all-cause mortality: a systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis. 2013 Oct 29;12:159.

Magri F, Muzzoni B, Cravello L, Fioravanti M, Busconi L, Camozzi D, Vignati G, Ferrari E. Thyroid function in physiological aging and in centenarians: possible relationships with some nutritional markers. Metabolism. 2002 Jan;51(1):105-9.

Paolisso G, Ammendola S, Del Buono A, Gambardella A, Riondino M, Tagliamonte MR, Rizzo MR, Carella C, Varricchio M. Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrinol Metab. 1997 Jul;82(7):2204-9.

Thillet J, Doucet C, Chapman J, Herbeth B, Cohen D, Faure-Delanef L. Elevated lipoprotein(a) levels and small apo(a) isoforms are compatible with longevity: evidence from a large population of French centenarians. Atherosclerosis 1998;136:389–94.

Vasto S, Scapagnini G, Rizzo C, Monastero R, Marchese A, Caruso C. Mediterranean diet and longevity in Sicily: survey in a Sicani Mountains population. Rejuvenation Res. 2012 Apr;15(2):184-8.

Willcox DC, Willcox BJ, Wang NC, He Q, Rosenbaum M, Suzuki M. Life at the extreme limit: phenotypic characteristics of supercentenarians in Okinawa. J Gerontol A Biol Sci Med Sci. 2008 Nov;63(11):1201-8.

Raw Vegan vs. Vegan: Which Diet is Best for Optimal for Health?

In a previous article I wrote about how vegans have been shown to have decreased risk of heart disease, cancer, and all-cause mortality. In addition, in 3 separate articles I’ve written about how cooking food at high temperature (above boiling, 212ºF), whether it is roasting, baking, frying or grilling produces molecules that have been shown to shorten lifespan (AGE products), and, that cause cancer in rodents (both acrylamide and furan). Collectively these data indicate that a vegan diet without cooking any of the food at high temperature is optimal for health. However, within the confines of a vegan diet, which is best for health, raw, or raw plus boiled? In this article, I will discuss why a purely raw food diet is not optimal for health.

In short, the reason is because of fructose. Fructose isn’t only found in HFCS, it’s also the main sugar found in fruit. Raw food diets consist of nuts, seeds, fruit and vegetables. However, on a 80-10-10 diet, in which nuts are rarely used, almost all of the calories will come from fruit. For example, bananas contain 27% fructose (http://ndb.nal.usda.gov/ndb/foods/list). In other words, if you eat nothing but bananas in a single day, this would be equivalent to a 27% fructose diet. And, on the fructose scale, bananas are relatively low in fructose. For example, strawberries, cherries, blueberries, oranges, peaches, pears, grapes, watermelon and apples contain 34%, 35%, 35%, 36%, 40%, 46%, 48%, 53%, 53% fructose, respectively. If you ate nothing but watermelon all day you would be on a 46% fructose diet. So, are there any adverse health effects of this amount of dietary fructose?

The answer is yes: both high and low fructose diets have been shown to elevate blood levels of triglycerides, which are a well documented risk factor for cardiovascular disease (Austin et al. 1998). On a 20% fructose diet for 5 weeks, triglycerides (20%), LDL (12%) and total cholesterol (10%) each increased (Reiser et al. 1989). In contrast, although triglycerides were not found to elevated after 4 weeks of a 20% fructose diet (compared with 3% fructose in the controls) in a separate study, both LDL and total cholesterol were significantly elevated (Swanson et. al  1992). However, evidence from 2 additional studies in humans clearly show the positive association between increased fructose intake and elevated triglycerides. Le et. al (2006) found that fructose supplemented at 1.5g/kg body weight for only 1 month was sufficient to raise blood levels of triglycerides by 36% and VLDL-triglycerides by 72%. The amount of fructose supplemented is the Le study is equivalent to 75g and 105g fructose for a 50kg and 70 kg woman and man, respectively, and can easily be obtained by eating 11-15 bananas. In addition, Faeh et. al (2005) showed that fructose supplemented at 3 grams/kg body weight increased triglycerides by 79%. This amount of supplemented fructose is equivalent to eating 22-30 bananas. In addition, these are relatively low-fructose containing diets.

In contrast, rats fed a 67% fructose diet (the control diet contained only starch) more than doubled plasma triglycerides, increased the concentration of triglycerides in liver, increased liver size, and, decreased liver copper content. The importance of copper depletion is illustrated by its role as a cofactor in the enzyme Copper-Zinc superoxide dismutase (CuZnSOD), the first line of defense against superoxide radicals located in the cytosol of all cells. Depletion of liver copper would be expected to reduce CuZnSOD activity, thereby increasing liver oxidative stress. Indeed, the concentration of lipid peroxidation products was shown to be higher in plasma, heart and urine in rats fed the high fructose diet (Busserolles et al. 2003). The good news is that an all fruit diet would never reach the 67% fructose diet found in the Busserolle study, but evidence from relatively low fructose diets (20%) still show elevations in triglycerides.

If on a raw food diet the answer is to not to eat only fruit, what should be substituted? As mentioned earlier, there is no risk of forming AGE products, acrylamide or furan when boiling food. Therefore, substitution of some amount of fruit on a raw food diet, perhaps one third to half of the total calories should come from whole grains. Boiled whole grains (with vegetables, for the added flavor) is a great way to keep your total fructose intake relatively low. To ensure no loss of nutrients during the boiling process, don’t dump the soup, drink it, it’s delicious! The tocotrienols found almost exclusively in whole grains have been shown to reduce cholesterol (Zaiden et. al 2010), to reduce inflammation (Wu et al. 2008), to reduce DNA damage (Chin et al. 2008), to reduce cancer progression (Wada et al. 2005), and are neuroprotective (Khana et al. 2003). Therefore, when substituting fruit for whole grains, you won’t be sacrificing nutrition!

From a personal experience, in 2011 I switched from a Mediterranean diet to almost exclusively raw vegan. However, my triglycerides, which have never been higher than 60 mg/dL jumped from 40 mg/dL in 2011 to 90 in 2012! Nothing else changed in my routine-the supplements that I take, or how often I exercise, my body weight/composition was the same-only my diet changed. Based on this, it seems like raw plus boiled may be the path to optimal health!

If you’re interested, please have a look at my book!

References:
Austin MA, Holkanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol 1998;81:7B-12B.

Busserolles J, Gueux E, Rock E, Demigné C, Mazur A, Rayssiguier Y. Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats.
J Nutr. 2003 Jun;133(6):1903-8.

Chin SF, Hamid NA, Latiff AA, Zakaria Z, Mazlan M, Yusof YA, Karim AA, Ibahim J, Hamid Z, Ngah WZ. Reduction of DNA damage in older healthy adults by Tri E Tocotrienol supplementation. Nutrition. 2008 Jan;24(1):1-10.

Faeh D, Minehira K, Schwarz J, Periasami R, Seongus P, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy males. Diabetes 2005;54: 1907-13.

Khanna S, Roy S, Ryu H, Bahadduri P, Swaan PW, Ratan RR, Sen CK. Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration J Biol Chem. 2003 Oct 31;278(44):43508-15.

Lê KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, Boesch C, Ravussin E, Tappy L. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr. 2006 Dec;84(6):1374-9.

Fructose data in foods provided by http://ndb.nal.usda.gov/ndb/foods/list

Reiser S, Powell AS, Scholfield DJ, Panda P, Ellwood KC, Canary JJ. Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. Am J Clin Nutr. 1989 May;49(5):832-9.

Swanson JE, Laine DC, Thomas W, Bantle JP. Metabolic effects of dietary fructose in healthy subjects. Am J Clin Nutr. 1992 Apr;55(4):851-6.

Wada S, Satomi Y, Murakoshi M, Noguchi N, Yoshikawa T, Nishino H. Tumor suppressive effects of tocotrienol in vivo and in vitro. Cancer Lett. 2005;229:181-91.

Wu SJ, Liu PL, Ng LT. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol Nutr Food Res. 2008 Aug;52(8):921-9.

Zaiden N, Yap WN, Ong S, Xu CH, Teo VH, Chang CP, Zhang XW, Nesaretnam K, Shiba S, Yap YL. Gamma delta tocotrienols reduce hepatic triglyceride synthesis and VLDL secretion. J Atheroscler Thromb. 2010 Oct 27;17(10):1019-32.